If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16y-5=3y^2
We move all terms to the left:
-16y-5-(3y^2)=0
determiningTheFunctionDomain -3y^2-16y-5=0
a = -3; b = -16; c = -5;
Δ = b2-4ac
Δ = -162-4·(-3)·(-5)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-14}{2*-3}=\frac{2}{-6} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+14}{2*-3}=\frac{30}{-6} =-5 $
| 280/5=x/532 | | -4+5x+22=6x+14 | | 2/70=n/32 | | 46=a+22.7 | | 56x=2x-12 | | -4+5+22=6x+14 | | 2x+4x–12=30 | | 8-f=4f+3 | | 9x-8+12x-1=22x-12 | | c-2.6=5.87 | | y/1.5=4.62 | | 8+6=-2x+32 | | 5(x–5)+2(4x+2)10= | | 8w-10=10+w+9w | | 21+29=18x-4 | | 129=t/0.27 | | 9+17=4x-22 | | 7.61-5.6c=-9.6c-7.99 | | (2x+8)+(3x+16)+(4x-18)+(3x-7)+(2x+25)=540 | | 151=-7m-(-7+9m) | | 9/7=54/x= | | 2f+8≥–3f+20= | | --2y+4=8y-6 | | 9u+28=4(u-3) | | 2a+5–3a+4= | | -r+8=7r-10-5r | | 8x^2=-46 | | 93x+3+84x=180 | | (2x+8)°+(3x+16)°+(4x-18)°+(3x-7)°+(2x+25)=°540 | | 114x+1=116x-1 | | (8n+8)(9n)=90 | | (8n+8)(9n)=180 |